Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets

نویسندگان

  • Bo Zhang
  • Jianjun Wang
  • Zhiping Liu
  • Xianren Zhang
چکیده

The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر نوع ساختار و زبری سطح بر زاویه ترشوندگی یک چدن هیپویوتکتیک با آب

Preliminary results of a research on the effects of microstructure and surface roughness of a hypoeutectic cast iron on its wetting angle are presented in this article. For this purpose, molten cast iron was solidified at different cooling rates to produce two samples of the same composition, i.e. a gray cast iron with A type flake graphite and a white cast iron. Two samples were then prepared ...

متن کامل

Thermodynamic modeling of contact angles on rough, heterogeneous surfaces.

Theoretical modelling for contact angle hysteresis carried out to date has been mostly limited to several idealized surface configurations, either rough or heterogeneous surfaces. This paper presents a preliminary study on the thermodynamics of contact angles on rough and heterogeneous surfaces by employing the principle of minimum free energy and the concept of liquid front. Based on a two-dim...

متن کامل

A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.

The Cassie-Baxter model is widely used to predict the apparent contact angles obtained on composite (solid-liquid-air) superhydrophobic interfaces. However, the validity of this model has been repeatedly challenged by various research groups because of its inherent inability to predict contact angle hysteresis. In our recent work, we have developed robust omniphobic surfaces which repel a wide ...

متن کامل

Contact Angles on Heterogeneous Surfaces: A New Look at Cassie’s and Wenzel’s Laws

We consider a three-dimensional liquid drop sitting on a rough and chemically heterogeneous substrate. Using a novel minimization technique on the free energy of this system, a generalized Young’s equation for the contact angle is found. In certain limits, the Cassie and Wenzel laws, and a new equivalent rule, applicable in general, are derived. We also propose an equation in the same spirit as...

متن کامل

Contact angles of surfactant solutions on heterogeneous surfaces.

Using Gibbs' adsorption equation and a literature isotherm, a new general model to predict the contact angle of surfactant solutions on (smooth or rough) chemically heterogeneous surfaces is constructed based on the Cassie equation. The model allows for adsorption at the liquid-vapor, solid-liquid, and solid-vapor interfaces. Solid-vapor adsorption is allowed in order to model the autophobic ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014